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A, concentration of species A, area ; 
4 concentration of species B ; 

Q molecular diffusivity ; 
d, diameter ; 

:: 
Fanning friction factor; 

kc: 
frequency [Hz] ; 
mass-transfer coefficient defined by 

N.,IA = k,(Aw - A,,,); 

N.4 mass-transfer flux normal to the wall; 

Re, Reynolds number (d U,,$v) ; 
SC, Schmidt number (v/D); 

Sh, Sherwood number, equation (9) 

&d/D); 
t, time ; 
u, vector instantaneous velocity ; 

~,w average velocity; 
C’ t I ) nondimensional y-velocity, 

equation (7); 

u,, u,, C’,, velocity components ; 
4, RMS value of D,; 
u,, ug, u,, fluctuating velocity components ; 
Cl*, friction velocity ; 
X, normally distributed random variable ; 
-x ,r mole fraction of species A ; 

s, y, 2, space coordinates; 

I‘, distance from the wall; 

?‘+, nondimensional distance, equation (7). 
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Abstract-A direct numerical calculation of the instantaneous mass transfer at a solid boundary was made 
from a one-dimensional mass balance equation with the only input information being the normal velocity. 
This velocity was generated on the computer so as to have the gross characteristics of the normal velocity 
obtained from turbulence experiments. The average mass-transfer rate was adequately predicted. Other 

characteristics of the scalar field are reported. 

NOMENCLATURE 

Greek symbols 

turbulent eddy diffusivity ; 
eddy diffusivity for the scalar quantity; 
momentum diffusivity ; 
duration of events ; 
density : 

*K. N. McKelvey is now associated with The duPont Co., We know that when mass or heat transfer occurs 
Wilmington, Del, U.S.A. from a tube to a fluid flowing turbulently within it, the 

4 order of magnitude ; 

Pa molecular viscosity ; 
V, ,u/p, the kinematic viscosity ; 

4, dimensionless concentration, 
equation (7); 

r,, wall shear stress ; 

$3 dimensionless time, equation (7); 

V, de1 or nabla ; 
4 delta or difference. 

Subscripts and superscripts 

ave, average ; 
4 species A ; 

B, species B; 

b, bulk ; 
max, maximum ; 
rc, random call ; 
W, wall ; 
-1 overbar, time average ; 

RMS value. 

INTRODUCTION 

THERE are very many processes that in some way 
involve heat or mass transfer. One need only look at 
environmental, atmospheric, oceanographic, biomedi- 
cal and chemical processing problems to find many 
examples. One of the most important operations in the 
chemical industry is mass or heat transfer at an 
interface. This occurs in nearly every unit operation ; 
yet, in spite ofits widespread practical application, it is 
poorly understood when the transfer between phases 
involves one phase in turbulent motion. This is due not 
so much to our deficient knowledge of the mass or heat 
transfer per se, but rather to our ignorance of the 
turbulence and our inability to characterize it in simple 
mathematical terms. 
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concentration or temperature gradient extends only a 
short distance from the wall for large Schmidt or 
Prandtl numbers. To study these processes we need 
only know the character of the turbulence in the wall 
area and understand its mechanisms. This will then 

enable modeling of the scalar field to be accomplished 
using a realistic picture of the turbulent flow field. The 
multitude ofprevious models have been based on long- 

time averages which do not adequately describe the 
turbulence characteristics. 

Recent advances in understanding shear flow tur- 
bulence as a result of studies of coherent structures in 
the flow indicate a need for an approach that uses the 

unaveraged transport equations themselves. It is well 
known that the time averaging of the equation results 
in more unknowns than equations, which necessitates 

closure approximations, whereas the unaveraged 
equations can be solved, if the instantaneous velocity 

field is defined. Our purpose is to develop a physically 
realistic, mathematically solvable model of mass or 
heat transfer for this latter case. We want a model 
based directly on a knowledge of the statistics of wall 
turbulence and the molecular diffusivity of the material 
and not based on a mechanistic picture or on empirical 

parameters from mass-transfer data. An important 
added advantage of using the unaveraged equations 
approach is that information is obtained not just 
about the average characteristics but also about the 
fluctuating components of the scalar field. This latter is 

essential, if other than first order chemical kinetics 
are to be considered. 

In order to simplify the further discussion, this paper 

will be written using mass-transfer terminology. It is a 
simple matter to convert the expressions to heat- 
transfer terminology. For the sake of consistency and 
ease of comparison, all expressions will be solved 

explicitly for the Sherwood number, which is a reduced 
mass transfer coefficient. 

TURBULENCE NEAR THE WALL 

The turbulent transfer of mass from a tube wall 
depends on both the molecular diffusion and the 
turbulent convective transport. The old notion that 
turbulent flow within tubes consists of three regions: 
(1) a turbulent central core in which viscous forces are 
unimportant, (2) a laminar sublayer near the wall in 
which eddy forces are insignificant and (3) a buffer 
zone between these two regions in which both viscous 

and eddy forces are important, has given way to a more 
modern concept of turbulence. This has been reviewed 
and discussed recently by Corino and Brodkey [l] and 
Nychas, Hershey and Brodkey [2]. The work of others 
has been extensively discussed in these references. 

According to current ideas, the region j+ < 5 is not 
a true laminar layer but is, instead, a viscous layer 
which is continually disturbed by small-scale fluc- 
tuations of low magnitude and intermittently distur- 
bed by the intrusion of elements of fluid from y+ > 5. 
In general, the motions in this layer are caused and 
sustained by motions in the adjacent region. The 

region 5 < JS+ < 70, which approximately coincides 

with the buffer zone of the old concept, is by no means a 
“relatively passive transitional zone”, but is instead a 
region of much activity. The most important feature of 
this area is the very intense, relatively small scale, 
three-dimensional ejections of fluid elements away 
from the wall (5 < y+ < 15). These elements interact 
with a high shear zone (7 < j.+ < 30) causing intense, 
chaotic velocity fluctuations which at times cause 
disturbances that reach right to the wall. 

For defining the turbulence field for use in the 
proposed calculation procedure, one needs to have 

detailed measurements of those structures that have 
been visually observed. For this we have used the 
results obtained by Wallace, Eckelmann and Brodkey 
[3], Brodkey, Wallace and Eckelmann [4] and Eckel- 
mann [5]. In these works, the many contributions by 
others are reviewed and discussed and need not be 

repeated here. 

MASS-TRANSFER MODELS 

Mass-transfer models may be broken down into 
four general categories: (1) those based on the film 
theory, (2) those based on analogies between mass and 
momentum transfer (strictly speaking, these are anal- 
ogies rather than models), (3) those which empirically 
allow some convective (eddy) transport near the wall 
and (4) those based on renewal theories. There have 
been many discussions of these in the literature. Rather 
than repeat such a review here, we will cite many of the 
references that also contain a review of the field. The 
most recent references that have a more direct bearing 
on the present work will be discussed. 

As examples of those associated with allowing some 
eddy motion in the wall region, one can cite Murphree 
[6], Lin, Moulton and Putnam [7], Deissler [8], 
Notter and Sleicher [9], Higbie [lo], Dankwerts [ll], 
Hanratty [12], Toor and Marchello 1131, Perlmutter 
[14], Harriott [ 151, Ruckenstein [l6], Koppel, Pate1 
and Holmes [ 171, Thomas and Fan [18,19] and Bullin 
and Dukler [20]. Models have also been based on the 
concept of an unsteady boundary-layer type motion. 
Some of these are Einstein and Li [21], Ruckenstein 
[22], Black [23,24], Meek and Baer [25,26] and 
Pinczewski and Sideman [27]. 

Bullin and Dukler [28] have recently presented a 
stochastic model of turbulent diffusion. Their ap- 
proach is based on the similarity of the mass transfer 
equation to the FokkerPlanck equation for a Mar- 
kov process. They solved the corresponding Langevin 
equation by a hybrid computer technique, which is 
inherently faster than known methods using finite 
differences to solve the convective-diffusion equations. 
However, drastic assumptions must be made to relate 
the Lagrangian velocity in their formulation to Eule- 
rian measures. Although Bullin and Dukler did not 
obtain RMS values, there is no basic reason why this 
could not have been done. 

Besides the models of mass transfer which have been 
cited, there are numerous well-known empirical or 
semi-empirical equations. Two of the older, still widely 
used empirical equations are the DittussBoelter and 
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the Chilton~Colburn equations. More recent equa- 
tions are those proposed by Metzner and Friend [29], 

Harriott and Hamilton [30] and Notter and Sleicher 
[9]. The best comparisons of the vast amount of data 

available can be found in [9] and [27]. 

‘PROPOSED MODEL 

In contrast to all the references cited above the 
present work uses the unaveraged mass balance equa- 
tion. For knowledge of the velocity field, a physical 
model is not used, but rather the velocity is matched, 
within a certain degree of approximation, to that 
actually observed in the experimental measurements 

cited [3-51. 
The equation of mass continuity for any species A in 

a non-reacting system can be written as 

(?Al&) + (I-! .V)A = DV2.4 (1) 

where the concentration and velocity vector are in- 
stantaneous values, and the molecular diffusivity is 
assumed to be constant. For rectangular coordinates, 
this becomes 

= D(~2.4/d.x2 +dZA/dy2 +~ZA,‘as2). (2) 

If one is only concerned with a thin shell of thickness 
AT, where Ar << Y, the effect of curvature can be 
neglected and the equation can also be applied in the 
vicinity of the wall in pipe flow. The simplification of 
equation (2) used in this work is 

(d/l::&) + u,(ait/ay) = D(a2ApyZ). (3) 

In order to arrive at equation (3), the following 
assumptions are necessary: 

li’A/Py21 >> I?*.&?& and la2A/?z2/ (4) 
and 

in the wall region. The justification for equation (4) is 
that, for high Schmidt number transfer, the dimension 
over which the concentration changes in the y- 
direction is an order of magnitude less than in the z- 
direction and at least this amount less in the x- 
direction. The 1,” dimension is less than 5, the lateral 

dimension (z’) is of the order of 100 and the X* 
dimension as high as 1000 (see Kline ef al. [31]). Thus, 
the term in a2j?y2 is two orders greater in size than the 
one in ?i’Jr?r’ and possibly as high as four orders 
greater than the one in ?*/c?xz. The justification for 
equation (5) is as follows: 

C:,.@)[t’A(l )@_~(a)] = ~~(~~~~~)(I) 

C.~.,(l)[~A(l)~r7s(I/(i~)] = c:,Y(a/4/ax)(s3) (6) 
v,(s)[aA(l)/a=(lis’)] = u,(aA/az)(tP) 

where 6 is the order of velocity and length and is an 
order less than unity. It is clear that the term in ajay is 
at least two orders of magnitude greater than that in 
d1d.x and a/& and may be as high as three orders 
greater. Sirkar and Hanratty [32] made a similar 
analysis and arrived at the same conclusions, inde- 
pendently. They considered two resulting equations, 

one for steady state and retaining the term in a/az and 

the other identical to equation (3). 
Equation (3) can be transformed into the dimen- 

sionless form 

awe+ (f/2)RezScU~(~~/ay+) 

= (fi2uWaWay+2) (7) 

where 

4 = #(Y, t) = (A-&)/(A,-&) 

y+ = yu*/v 

$ = i&/d2 

u,: = u,ju* 

u* = (.r,/p)“‘2 = U,,,,,(f/2)“2. 

The molar flux of species A at the wall is given by 

N .,+ = +w(~.A,,+ N,~,,) - D(aAiay), 

= -co/(1 -.~,,,)](aAiay),. (8) 

Equation (8) can be transformed into the dimension- 
less form 

Sh = -(@lay+),+ ,0(f/2)Re. (9) 

Reasonable boundary conditions on #(y, t) for equa- 

tion (7) are 

&y+, 0) = 0 or any other initializing condition 

#)(O, $) = 1 (IO) 

4% $) = 0 

where L_., is chosen in this work to be 5. Equations (7) 
and (9) along with the boundary co~d~~~ons (10) and 

input datafbr UT comprise the model. 
The quantitative information about the radial vel- 

ocity in the region 0 < y+ < 5 used in this work is 
based on the measurements reported by Wallace er at. 
[3], Brodkey et al. f4] and Eckelmann [S]. Details of 
the probability density distribution of U, are given in 
[4]. The U, distribution is much more symmetric than 
the U, one and closer to Gaussian. Although not 

reported in [4], the skewness and flatness were mea- 
sured. Over the range of 0 < y’ < 10, the average 
values were 0.53 and 4.3, respectively. For a Gaussian 
distribution these are 0 and 3. For this work, U, was 
generated by the computer using a Gaussian random 
generator. The generated signal had zero mean, and 
RMS value as measured, and was truncated at the high 
and low ends to correspond to the reported distri- 
butions. These extremes were selected at the y+ = 5 
position and are+4.01 cm/s and-3.31 cm/s for the 
high and low ends. Other values were also tried, but 
there was no effect as such large extremes were rarely 
called. 

Besides the distribution of magnitudes of the radial 
velocity, there is a length of time (or duration) over 
which the velocity fluctuation acts. A frequency, l/O, 
can be obtained from this duration. As a first approxi- 
mation, it was assumed that at a given Reynolds 
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number the duration was constant. The information 
on this also came from [4], where the average duration 

(8) of events is reported for the four classes of split 
signals. For this work, such a refined splitting was not 
attempted and an average duration at each available 
point (I.+ = 3.4,6 and 10) was calculated by using the 
measured durations and the fraction of time the signal 
was in the various categories. The resulting time an 
eddy lasts was made non-dimensional with inner 
variables because only the area immediately adjacent 
to the wall was considered. The nondimensional 
duration varied little over the area and thus a single 
value was used for all J+ positions. This value of 
0L;*2/~~ was 8.0. The standard deviation about this at 
the three points was 0.46. 

The final restriction necessary on the radial velocity 
is that its RMS value correspond to that actually 
measured over the region. For this, we fitted the 
measured wall region RMS data (Eckelmann [5] ) with 
a fourth-order polynomial and required that the RMS 
values of the random data called fit the polynomial for 
each yi position. The fit used was 

(c:‘,’ z = A?,‘+B~i’+C?,+3+f)l’+s (11) 

and it was satisfactory out to a J+ of 130, with A 
= 5.10889 x 10-2, B = -9.23782 x lo-.‘, C 
= 7.00448 x IOmh and D = - 1.96310 x 10m8. Equa- 

tion (11) was used to generate the normal velocities 
from the random numbers by 

r:: = Jc’:2)1:2x 
(12) 

where X is normally distributed, random variable with 
respect to time, of variance equal to unity and mean 
equal to zero. As a consequence of the various 
assumptions, the fluid moves locally in a coherent 

manner. This is the type of behavior visually observed 
in this region [I]. 

In summary the following assumptions were made 
in this mathematical model: (1) The instantaneous 
concentration can be represented by equation (7), with 
the boundary conditions given by equation (IO). (2) 
The instantaneous Sherwood number is given by 
equation (9). (3) The Schmidt number is high enough 
so that the instaneous normalized concentration at _v+ 
= 5 is essentially zero. (4) The instantaneous radial 
velocity in the sublayer is a result of motions in the 
adjacent layer, thus causing“connected motion”in the 
p-direction. With respect to time, the radial velocity is 
random and normally distributed with a mean of zero 
and a variance given by equation (I 1). 

RESULTS AND DlSCUSSION 

In my numerical computation by finite difference, 
one must first establish that the numerical method 
itself does not influence the results. This involves the 
proper selection of both the space and time increments. 
For complete stability and convergence of the finite 
difference approximation, one should satisfy 

Ayi < 2/(&C; t )_ (13) 

This condition is sufficient but not necessary for 
numerical accuracy ; i.e. satisfactory results may well 
be obtained for AJ’ values greater than given by 
equation (13), but this would have to be established by 
actual comparisons by numerical calculations. As a 
guide for Se of 1000 and a reasonable maximum value 
of L:>+ equation (13) gives A,!+ < 0.002. For the 

maximum .r+ of 5 used in this work, this means 2500 
space steps should give stability and convergence. 
However, the maximum Schmidt number of 6000 used 
would require six times the number of steps. The 
maximum value allowed for rl: is at the most 4.01 
times that obtained from equation (12) as given by the 
limits put on the distribution as previously mentioned. 
Equation (12) at y+ of 5 gives UJ? = 0.25. We selected 
as a reasonable maximum L’,? = 1; i.e. four times the 
average, even though very rarely values as large as four 
times could occur. To check this numerically, runs 
were made with a fixed set of random numbers (so that 
the runs would bc reproducible in detail) at a SL 
= 1000 at space increments of 5000,1000,500,250 and 
125. For this, the time increment was selected such that 

eight nu~~~erical steps in time were made between each 
new selection of a random number to fix a new level of 
the normal velocity. When compared to the results 
obtained with 5000 space increments, those using 125 
and 250 were unsatisfactory. At 500 increments, the 
results deviated more than is desirable at the outer 

boundary (r+ = 5) and over the rest of the field were 
l--2:<, high. The results using 1000 increments were 
similar to those from the 5000 increment run and 
about a 0.5:; high. Since this is well within the expected 
accuracy of the model, 1000 space increments were 
used for further runs. 

In order to check the size of the time step, runs were 
made with 16, 8, 4 and 2 time steps between each 
random call. When compared to the 16 time step run, 
the 2 time step run was unsatisfactory. The 4 time step 
run was low by about 3% for the average mass-transfer 

rate at the wall, high by about 6% for the concentration 
distribution. The 8 time step run reduced these errors 
by about half. Since, as will be seen, the model is only 
partially successful for predicting the concentration 
distribution, 4 or 5 time steps per random call were 
used for the final r_uns. 

A criticalestimate that had to be made was how long 
a run must be in order to have a preselected degree of 
reproducibility of the final averaged values when 

totally independent sequences of random numbers are 
used. For this we estimated the run times from the 
expression (14) obtained from Bendat and Piersol 
[33]: 

Percent reproducibility in final result 

= l~(~r,~~~~~~)I,~~ (14) 

where r,c is the actual time between random calls and 
1 max is the total real run time. For all runs the value of 
t mm was selected so that the reproducibility as calcu- 
lated from equation (14) was about 1%. To test this, 
runs under the same conditions but with totally 
different random sequences were made. The condition 
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FIG. 1. Average Sherwood number at specific times. Rr = 10000 and SC = 1000. RS = random sequence 
and IC = initial condition. 
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0 100 200 x0 LCQ 5ol 600 7co 
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FIG. 2. RMS Sherwood number to average Sherwood number ratio. Re = 10000 and SC = 1000. 
= random sequence and IC = initial condition. 

RS 

selected was Re = 10000 and SC = 1000. Figure 1 

gives the results for the accumulative averaged Sher- 
wood number (Sh) and Fig. 2 for the ratio W/Sk. 
These two plots have expanded ordinates in order to 
emphasize the errors. Later plots on less expanded 
scales give a better feel for the approach to steady state. 
Also shown on these figures are runs with identical 
random sequences but with widely different initial 
conditions. For the average Sherwood number, the 
two runs with different random sequences were within 
i3”/, of each other. Again, the estimate made from 

equation (14) for the three runs shown was between 1 
and 15%. The RMS Sherwood number indicates 
similar behavior. Apparently the estimate by equation 
(14) is too low by about a factor of two. Although there 
is a wide discrepancy in the average Sherwood num- 
bers for short times, after about 500s of real time, the 
difference is negligible. The main initial condition 
(IC 1) used to start the calculation was not far removed 
from the steady state concentration distribution calcu- 
lated. The other (IC2) was purposely selected to 
deviate in the opposite direction and be far removed 
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Nss = 1000 

lime, 5 

FIG. 3. Average Sherwood number at Re = 60000 for va- 
rious Schmidt numbers. 

.I :6 .II la 2 ‘61 

SCHMIDT NUMBER x 1O-3 

FIG. 4. Final average Sherwood number vs Schmidt number 
at Re = 60000. 

from the steady state value. It was selected to be closer 
to a step input so as to make the runs with two different 
initial conditions as sensitive to the final conditions as 
possible. As seen in Fig. 1, the effect on the average 
Sherwood number is quite small, where the difference 
disappears after a short period of real time. For the 

RMS Sherwood number the effect was greater because 
of the initial high RMS values associated with the 
gradient being much different than the steady state 

value. It took a longer period of time to reduce the 
difference, but it was reduced to about i: Y,, after 500s 

of real time. 

Figure 3 shows the average and RMS Sherwood 
numbers as a function of time for three different 
Schmidt numbers at constant Reynolds number. The 
real times are such that the results should be within 
537; of the final values. This figure illustrates the 
correct increase ofthe Sherwood number with increas- 
ing Schmidt number. Figure 4 shows the average 

predicted Sherwood numbers at the ends of the runs vs 
Schmidt number compared to the equation of Hamil- 
ton [30]. The predicted variation of Sherwood number 
with Schmidt number is in good agreement with 

experimental values represented by Hamilton’s equa- 
tion, although possibly slightly high. Hamilton’s equa- 
tion is only an average representation of data that is 

widely scattered. Also recall that none of the para- 
meters for the velocity field in the model were adjusted 
to fit the mass-transfer results. 

The RMS values of the mass-transfer rate Buc- 
tuatibns are of the same order as the mean rate at the 
wall. This is a direct consequence of the RMS con- 
centration gradient fluctuations at the wall being of the 
same order as the mean concentration gradient there 
(equation 9). Clearly, because of the small region over 
which the concentration changes, the turbulence can, 
for example, easily bring in fluid of zero concentration 
very close to the wall, thus resulting in high gradients. 
The only wall rate fluctuation data available is that of 
Sirkar and Hanratty [32] which, for SC 2 2300, gave a 
RMS to mean ratio of 0.29. This is about one-quarter 

of our estimate. This must be a result of the limit~~tiolls 
put on theinstantaneous velocity in our model. such as 
the constant frequency for all events. 

Figures 5 and 6 show the variation of the average 

Sherwood number with Reynolds number for SC 

____--R,.,S 

1 NRc - 60.005 

0 20 40 60 80 100 N& - 34000 

0 100 200 300 KQ 500 NRe = 10,000 

Time, s 

FIG. 5. Average Sherwood number at SC = 1000 for various Reynolds numbers. 
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= 1000. Again, the agreement with Hamilton’s equa- 

tion is reasonable when one recognizes the scatter in 
the data that his equation represents. 

Figure 7 shows the typical variation of the in- 

stantaneous Sherwood number with time. For the 
instantaneous values only every 500th time step was 
plotted, and, for this run, 500 steps represent 100 
random calls. Clearly, if all steps were plotted, the 
signal would have much higher frequency content. The 
rate, which is plotted in Fig. 7, is very sensitive to 
changes in velocity. The concentration itself is less 
sensitive; thus, plots were generated that gave the 
location for a specific concentration for each time step. 

The plot was generated near the end of the run when 
steady state in the average values had beenestablished. 

Figures 8 and 9 show typical variations with time at 
steady state conditions of the position of fluid having 
an instantaneous normalized concentration less than 
0.1 and the corresponding mass-transfer rate at the 
wall. The large ejections or excursions of high con- 
centration fluid outward are the result of the particular 

FIG. 6. Final average Sherwood number vs Reynolds 
number at SC = 1000. 

3ooc - 

Nsh 

N;h 

%, 

/ I I / / 

- Instantaneous Sbwood No. 

------- rms Sherwood No. 

---Average Sherwood 

Fro. 7. Instantaneous RMS and average Sherwood numbers at Re = 10000 and SC = 1000. 

+ At 
+ Eddy time 

: v : I. : 

-------.__-.___--_.: 
\---yRelative NSh 

,’ 
---.___-.__~---.____________-- ._____“____r-__.-y_ 

0 I I I I 

0 2.055 4.110 6.166 8.221 

Time. from 709-006 s into run 

FIG. 8. Instantaneous position of fluid having 4 = 0.1 and instantaneous Sherwood number at Re = lOOO@ 
and.%= 1000. 
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01 I I I I 
0 0.089 0.178 0.268 0.357 C 

Time, from 39.76 s Into run 

L7 

FIG. 9. Instantaneous position offluid having d, = 0.1 and instantaneous Sherwood number at Re = 60000 
andSc= 1000. 

values of the random velocities generated. At first, it 
was difficult to understand how the instantaneous 
velocities could cause the concentration to vary so 
drastically, but when it is considered that J’+ = 5 

corresponds, for these two Reynolds numbers, to 
distances of about 0.4 and less than 0.1 mm from the 
wall, respectively, the importance of small velocity in 
this area is better understood. The increase in the 
frequency with increasing Reynolds number is unmis- 
takable, when one notes the time scale difference. 

It is possible to compare the results of this model 
qualitatively with some of the experimental results 
obtained by Shaw and Hanratty [34] and Sirkar and 
Hanratty [32]. Since they used a probe of finite size, 

the variations in mass transfer are probably due only 
to rather large-scale variations in concentration. Shaw 
and Hanratty measured a frequency of mass-transfer 
coefficient fluctuations at Re = 10000 of about 0.3 Hz 
and at Re = 60 000 of about 4 Hz. Sirkar and Hanratty 

presented the mass-transfer rate spectra for two Re- 
ynolds numbers. The peak region lies between 3.5 
x 10-4 < f’vJU *2 1.5 x 10-3, which corresponds to 

0.06-0.23 Hz for Re = 10000 and 1.335.4 Hz for 
60 000. From Figs. 8 and 9 it can be calculated that the 
predicted frequencies of large-scale concentration fluc- 
tuations near the wall are in agreement with these 
measurements. Our values, which are very appro- 
ximate are 0.2-0.3 Hz for a Reynolds number of IO 000 

FIG. 10. Average concentration distribution at two Reynolds numbers and SC = 1000. RS is random 
sequence selected. 
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and 6- 11 Hz for 60 000. Note that the frequencies cited 

above are much lower than the basic frequency 
associated with velocity or the number of random 
calls/s. This is a result of the cascading effect ofrandom 

numbers where often one will have a string of calls of 
the same sign and similar magnitude, so that the 
integral effect of one direction of transfer is retained for 
long periods of time. 

Figure 10 shows a typical average concentration 
gradient along with that experimentally estimated 
from the results of tin et al. [7]. The agreement with 
experiment is reasonably good for small values of y+, 
but becomes progressively poorer as y+ approaches 5. 
This result suggests that while the model adequately 
describes mass transfer in the immediate vicinity of the 
wall, it tends to break down as distance from the wall 
increases. This discrepancy is thought to be due to the 
assumption of a constant duration (i.e. random calls/s) 
of velocity fluctuations at a given Reynolds number. 
From Brodkey et al. [4] it is known that the durations 
of ejections (motions away from the wall) and sweeps 

(motions toward the wall) are not the same. Paren- 
thetically, one may note that an abiIity to predict the 
mass-transfer coe&icient is the least critical test of a 
model. Prediction of the concentration gradient is a 
more stringent test, a test most theories do not even 
attempt. The ultimate test would be the prediction of 
the concentration fluctuations which are also reported 
here and have not been reported elsewhere. 

Some observations from the calculated results with 

regard to fluctuating quantities are of interest. The 
RMS Sherwood numbers have already been presented - 
and discussed. The covariance, M+Z, was in all cases 
linear in J’+ (up to J.+ of 5 used as the outer limit of the 
calcui~~tion). From this and the equation 

u,a = E,(dA/dx) (15) 

the scalar eddy viscosity was calculated and varied as 
)‘+ 2 , in contrast to the observed variation with y+3 [9]. 
However, the scalar eddy viscosity as calculated from 
equation (15) cannot really be relied upon because of 
the problems with the calculation of da/dJl as shown in 
Fig. IO. The linear variation of the covariance may also 
be a result of the fitting equation used in equation (11). 
Probably better would have been to use A = 0 and 
evaluate the other constants accordingly. 

Over the range of variation in Reynolds number 
there was only a&3% variation in the ~on~elitration 
profile and a-&6”/;, variation in the scalar eddy vis- 
cosity. The inverse turbulent Prandtl number was less 
than unity over the J’+ range considered. Brodkey [36] 
suggested a parallel relation for the scalar field to that 
suggested for the momentum field by Brosko. The 
resulting approximation for the inverse turbulent 
Prandtl number is 

c,/E, = (dCJ,‘U)/(dA/a). (16) 

The inverse turbulent Prandtl number is inde- 
terminate at the wall, but it approached zero in the 
numerical scheme as the wall was approached. From 

equation (16), the value approached infinity, indicat- 
ing the approximation is not valid in the critical region 

near the wall. 
Let us now consider the assumption of using 

constant duration or frequency of velocity fluctuations 
at a given Reynolds number in more detail. Passing 
through any point in the tube are eddies of various 
sizes. Most of these are probably near some average 

size, but a few till be much larger and a few much 
smaller. Since the velocity within an eddy is nearly 
constant, the velocity at the point being considered will 

be constant during the time it takes for the eddy to pass 
the point. Assuming that all ofthe eddies are convected 
at about the same velocity, then the frequency of 

velocity fluctuations will be very low when a large eddy 
is passing and high when a small eddy passes. Since the 
constant average frequency assumed in this model is 

probably representative of the average-sized eddies, 
the large and small ones are being neglected. Not 
considering the small eddies is probably of little 
consequence, but since the large eddies represent large 

movements of mass, they may contribute substantially 
to the mass transfer at the point even though they 
occur rather infrequently. This would lower the input 
of low concentration material from the outer region 
(v’ > 5) and thus would predict less transfer between 
the region and the bulk stream than is experimentally 
observed. This is exactly what is shown in Fig. 10. 

Since the mass transfer at the wall depends directly 
only on the conditions in the vicinity of the wall, it is 
possible to predict Sherwood numbers with reason- 
able accuracy with the assumption of a constant 
frequency of fluctuations, On the other hand, if the 
mass transfer throughout the region is to be ade- 

quately described, it will be necessary to assume a 
more realistic picture for the velocity fluctuations. The 
effort here was a first approximation to the actual 
observations, and as such was unique in that it is the 
first attempt to follow the instantaneous con- 
centrations in the wall area using a realistic model. The 
fact that it is able to adequately predict Sherwood 
numbers is remarkable when it is considered that the 
model contains no adjustable constants. The value of 
the model, though, is not so much its ability to predict 
Sherwood number, but rather its ability to deal with 
the higher moments and to indicate the importance of 
various factors, such as the large eddies, on the mass 
transfer. 
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TRANSFERT MASSIQUE ET PARIETAL RESULTANT 
DE STRUCTURES COHERENTES DANS UN LIQUIDE 

EN ECOULEMENT TLIRBULEN~ 

Rbum&Un calcul numtrique du transfert massique instantane sur une paroi solide est conduit g 
partir de I’equation de bilan massique monodimensionnel, I’information d’entree &ant la vitesse normale. 
Cette vitesse est gentree sur I’ordinateur de facon a rtaliser globalement la vitesse normale obtenue dam 
des experiences sur la turbulence. Le transfert massique moyen est pridit correctement. On considhe 

d’autres caracteristiques du champ scalaire. 

STOFFUBERGANG AN DER WAND ALS ERGEBNIS KOHARENTER 
STRUKTUREN IN EINER TURBULENT STRGMENDEN FLUSSIGKEIT 

Zusammenfassung- Mit Hilfe einer eindimensionalen Massenbilanz wurde der momentane Stoffiibergang 
an einer festen Wand mit der Normalgeschwindigkeit als einziger Eingabegr~~ numerisch ermittelt. 
Diese Geschwindigkeit wurde vom Recliner selbst entsprechend der Char~~kteristik van 
Normalgeschwindigkeiten aus experimentellen Untersuchungen vorgegeben. Der mittfere Stofftibergang 
wurde in geeigneter Weise vorausberechnet. Andere Charakteristiken des skalaren Feldes werden 

mitgeteilt. 
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PAC’JET MACCOnEPEHOCA Y CTEHKM HA OCHOBE 3KCnEPMMEHTAJlbHO 
YCTAHOBJlEHHOti CTPYKTY PbI TY PEiYJlEHTHOP0 nOTOKA XMAKOCTM 

AHHoTaqw- BblrIOJlHCH IlpnMOti ',!-,C,IeHHblti pac'ieT M~HOBLZHHO~O MaccO"epeHOca y TBepDOR 

rpaHllUbl Ha OCHOBeODHOMepHOrO ypaBHeHMR 6anaHca MaCCbl,KOrJ,a M3BeCTHa TOflbKO HOpMaJlbHa5i 

COCTaBJlRH3UlaR CKOpOCTM Ha BXOne. Ha KOMnblOTepe 3Ta CKOPOCTb rCHepMpyCTCn TaKMM o6pa3oM, 
YT06blee3HaYeHMI BOCHOBHOMCOOTB~TCTBOBa~W3KC~~p~M~HTy.~p~~H~RCrtOpOCTbMaCCO~~pCHOCa 

pacc94TaHa c nocTaToqHoR ToqHocTbto. ~~MB~LISITCSI TaKme npyrkie XapaKTepMcTuKM cKanapHor0 


